Search results for "time-dependent density-functional theory"

showing 5 items of 5 documents

Time-dependent density-functional theory in the projector augmented-wave method

2008

We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we found perfect agreement in the calculated photoabsorption spectra. We discuss the strengths and weaknesses of the two methods as well as their convergence properties. We demonstrate different applications of the methods by calculating excitation energies and excited state Born–Oppenheimer potential surfaces for a set of atoms and molecules with the linear-response method and by calculating nonlinear e…

ELECTRONIC EXCITATIONStime propagationGeneral Physics and AstronomySpectral linelaw.inventionlinear responseATOMSlawQuantum mechanicsSPECTRAPhysical and Theoretical ChemistryEXCHANGEEQUATIONSPhysicsREAL-TIMEPhysicsAtoms in moleculesTime-dependent density functional theorytime-dependent density-functional theoryNonlinear systemProjectorRESPONSE THEORYphotoabsorptionExcited statenon-linear responseProjector augmented wave methodDensity functional theoryCLUSTERSAPPROXIMATION
researchProduct

Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure

2020

Metal nanoparticles are attractive for plasmon-enhanced generation of hot carriers, which may be harnessed in photochemical reactions. In this work, we analyze the coherent femtosecond dynamics of photon absorption, plasmon formation, and subsequent hot-carrier generation through plasmon dephasing using first-principles simulations. We predict the energetic and spatial hot-carrier distributions in small metal nanoparticles and show that the distribution of hot electrons is very sensitive to the local structure. Our results show that surface sites exhibit enhanced hot-electron generation in comparison to the bulk of the nanoparticle. While the details of the distribution depend on particle s…

Materials scienceDephasingAtom and Molecular Physics and OpticsFOS: Physical sciencesGeneral Physics and AstronomyNanoparticlePhysics::Optics02 engineering and technology010402 general chemistry01 natural sciencesAtomic unitsArticleplasmon dephasingPhysics - Chemical PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials ScienceAbsorption (electromagnetic radiation)Plasmonatomic-scaleatomic scaleChemical Physics (physics.chem-ph)Plasmonic nanoparticlesCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicslocalized surface plasmonGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)plasmon decay021001 nanoscience & nanotechnologyCondensed Matter Physicstime-dependent density-functional theory0104 chemical sciencespintaplasmonitplasmonittime-dependent density functional theoryChemical physicsFemtosecondnanohiukkasetAstrophysics::Earth and Planetary Astrophysicshot carriers0210 nano-technologyhot electronsLocalized surface plasmon
researchProduct

Plasmon Excitations in Mixed Metallic Nanoarrays

2019

Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement…

Materials scienceGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectronoptiset ominaisuudet01 natural sciencesMolecular physicsElectromagnetic radiationHomonuclear moleculeplasmonicsnanorakenteet0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular Clusterstransition contribution mapsGeneral Materials ScienceSurface plasmon resonance010306 general physicsPlasmonCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsta114Surface plasmontiheysfunktionaaliteoriaGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)molecular plasmonics021001 nanoscience & nanotechnologytime-dependent density-functional theorytime-dependent density functional theorycollective excitationQuasiparticleDensity functional theory0210 nano-technology
researchProduct

Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces.

2019

Plasmon-induced hot-carrier transfer from a metal nanostructure to an acceptor is known to occur via two key mechanisms: (i) indirect transfer, where the hot carriers are produced in the metal nanostructure and subsequently transferred to the acceptor, and (ii) direct transfer, where the plasmons decay by directly exciting carriers from the metal to the acceptor. Unfortunately, an atomic-level understanding of the direct-transfer process, especially with regard to its quantification, remains elusive even though it is estimated to be more efficient compared to the indirect-transfer process. This is due to experimental challenges in separating direct from indirect transfer as both processes o…

NanostructureMaterials scienceprobabilityta221General Physics and Astronomyhot holes02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionMetalnanorakenteetpuolijohteetlawTransfer (computing)General Materials SciencePlasmonta114nanoelektroniikkatiheysfunktionaaliteoriaGeneral Engineeringplasmon decayTime-dependent density functional theory021001 nanoscience & nanotechnologyLaserAcceptortime-dependent density-functional theory0104 chemical sciencesdirect transferChemical physicsvisual_artFemtosecondvisual_art.visual_art_mediumtodennäköisyys0210 nano-technologyhot electronsACS nano
researchProduct

Data for "Plasmon excitations in chemically heterogeneous nanoarrays"

2020

The data includes atomic structures, photoabsorption spectra, and noninteracting spectra of the systems modeled in the article "Plasmon excitations in chemically heterogeneous nanoarrays" by Kevin Conley et al. See README.md in the archive for a detailed description.

plasmontime-dependent density-functional theory
researchProduct